c语言和python哪个好入门

2024-02-22 08:55

1. c语言和python哪个好入门

python相较C语言入门要简单的多。
如果没有编程基础,强烈建议培养编程思维,先学习C语言,这样在学习其他高级语言会显得比较轻松。
但这里要说的是,如果你是想学习一门语言去找一份工作,Python目前可能并不是太合适。
如果你是一名资深程序员,强烈推荐你将Python做为第二语言,未来,它将助你在激烈的职场竞争中拔得头筹。比如:大数据、机器学习、数据处理、自动化运维、爬虫、数据采集与可视化、web后端等等。
所以c语言和python,是先苦后甜,亦或者是先甜后苦需要你衡量一下。

c语言和python哪个好入门

2. 程序化交易里面主流的语言是C++,python是趋势吗?主流的平台软件有...

语言只是工具,各有优势,用自己顺手的就行了,但对于通常的金融交易来讲,大部分语言效率都足够了,不明白为什么一直有这样的争论存在,对于程序而言,执
行效率只是其中一个重要的方面,但不是全部,还要考虑开发效率,可维护性,程
序健壮性等众多因素。  
至于Java的效率,并不是想像中的那样低,GC 是会有不确定的 
CPU消耗,但这个是可控的,算法交易模块就有用Java开发的,国外还有MarketCetera平台就是
完全基于Java的。 
众多语言中,R/Python是我喜欢用来研究的,Python,C/C++是用来交易的,但C/C++是易错的,难维护,不是特别需要追求速度的时候一
般是不用的,就像不再用汇编来写程序一样, Scala 是拿来玩的。 最喜欢的还是Python,可用的资源多,开发效率高,好维护。

3. 量化投资 用python好 还是c++

Python是非常适合做quant类工作的语言,本身就是科学计算方面的统治级语言,现在加入了IPython,pandas等重量级神器,为Quant类工作量身定做,而且仍在飞速发展中,以后会越来越重要。

关于其他语言,首先介绍一下我自己最喜欢的一个比较小众的组合,Mathematica+Java/Scala。 Mathematica的优点在于:本身提供函数式的编程语言,表达能力非常强大,比如Map/Reduce是标配,很多时候不需要去做烦人的for循环或下标控制,排版经常可以直接照数学公式原样输入,即直观又不容易写错;代码和输出混排的排版方式使得建模时的演算和推理过程非常流畅,甚至还可以直接生成动画,对于找直观理解非常有帮助(这几点分别被IPython和R偷师了一部分)。Mathematica的缺点在于对金融类的时间序列数据没有很好的内建支持,使得存储和计算都会比较低效,因此需要用内嵌Java的方式来补足,对于数据格式或性能敏感的操作都可以用Java/Scala实现。这个组合在我心目中无出其右,不论是快速建模,还是建模转生产,都远远领先于其他选择。但Mathematica的商用授权很贵,如果公司本身不认可的话很难得到支持,这是最致命的缺陷。另外随着Python系的逐渐成熟,领先优势在逐渐缩小,长远看Python的势头更好一些。

其他答案里也列举了不少其他语言,我自己既做Quant的工作,也做软件开发的工作,这里想从一个软件工程师的角度,说说我的理解。平时工作中会和一些偏Quant背景的人合作,很容易发现建模能力好的人往往在计算机方面基础比较薄弱(因为以前的训练重点不在这里)。他们也可以快速学习掌握一种像C++,Java这样的语言,实现很多必要的功能。但是一方面这些语言陡峭的学习曲线和繁琐的开发步骤会给他们真正要做的工作增加不必要的负担,另一方面一旦涉及到性能敏感的情景,他们对计算机体系结构缺乏理解的缺点就容易暴露,比如说很可能他们没有计算复杂度,内存碎片,cache miss,甚至多线程等概念,导致写出的程序存在相当大的隐患。

即使是计算机功底扎实,如果每天的工作需要在C++,Python,R/Matlab,甚至一众脚本语言之前来回切换,思维负担也会非常重,人的精力是有限的,很难同时兼顾数学建模和底层代码调试这种差距巨大的工作。长期发展下去最可能的结果就是要么远离建模,专心做生产环境开发,要么远离生产环境,专心建模。这种局面显然不论对个人还是团队都是有很大弊端的。

如果深入思考这个问题,相信不难得出结论,对于Quant来说,C++这种相当面向机器的语言肯定不是最佳选择。的确在历史上,它比更面向机器的C已经友好了很多,但是在计算机技术飞速发展的今天,如果还需要Quant大量使用C++做建模类的工作显然是很遗憾的事情。设想一下你拿到一份股票数据,不论你是想分析价格走势,成交量分布,还是波动性,第一件要做的事一定是画出图来看看,有一个直观认识。如果你的工具是C++,肯定有很多时间花在编译,调试,再编译的过程上,好容易能解析文件了,接下来怎么算移动平均?怎么算波动性?全都要自己写代码。再然后怎么画图?这整个工作流简直惨不忍睹,这些问题浪费掉你大部分精力,而他们全部和你真正感兴趣的工作毫无关系。所以如果你是一个数理金融等背景的新人打算开始Quant生涯,在决定是否要投资到这项重量级技术上时需要慎重,即便它目前的市场定价可能仍在峰值。相比之下我认为Python会是更理想的选择,即能很好的完成建模工作,也可以训练一定的编程技巧,使你在必要时也能胜任一些简单的C++工作。

最后同意 @袁浩瀚,不要拘泥于语言,不论学习那一种,对其他的语言还是要抱有开放的心态。另外世界变化很快,你会发现单一的语言分类方式其实是没有意义的,每一门语言在发展过程中都会逐渐吸收其他语言的特性,比如Python本身就既有C/C++/Java那样命令式的特点,也有函数式的特点,像pandas甚至还提供类似SQL的使用方式,在其他语言或系统里也都或多或少包含了不同的特点,可以在学习过程里慢慢体会。

量化投资 用python好 还是c++

4. 学c和python哪个好

python和c先学哪个?首先,我们都知道,兴趣是好老师,所以培养起兴趣很重要。那么,更简单更容易掌握的就是Python啦。Python入门程序比较简单,在前期也比C容易学一些,后期会有面向对象之类的内容。
而有人觉得应该从C语言开始入门。原因如下:
1.C语言是你上大学第一门接触的编程语言,可见它的重要性。
2.C语言是一种面向过程的语言,而Python是一种面向对象的解释型计算机程序设计语言。而你需要先了解什么是面向过程,然后去了解什么是面向对象。
3.C语言的语法结构比较严谨,可以这样说,如果你把C语言学透彻了,那你学其他的语言就简单多了,可谓是一通全通。
Python的语法比较特别,都是靠空格去严格控制的,但是这对于刚接触编程的人员来说并不好,毕竟运用和Python一样语法的语言几乎没出现,所以你如果先掌握了它的语言语法,对你以后学习其他的语言会有影响。
其实,如果使用c入门编程,能更好地掌握编程基础,理解代码运行原理,但是学习c比较枯燥,很难迅速见到成效,可能会打击学习的积极性。
而使用python见效快,但是因为大部分使用高级接口,所以对底层实现方面可能就比较模糊,但是也可等学完python之后再学习c去补上。
所以我还是推荐python入门。但是,我觉得别人说的就是别人说的,还是自己实践才知道什么适合自己。

5. 做自动化测试学python好还是别的语言好

我之前是做自动化工作的,自己学了perl, python,发现perl语法比较难,python比较简单,可读性也很好。现在python的应用很广泛,人才需求也很大,学这个没毛病。前期你可以去鲁德这个测试知道平台看看,自动化测试的资料蛮多的。

做自动化测试学python好还是别的语言好

6. python 与C的区别

python与C的区别如下。
1、语言类型不同。
Python是一种动态类型语言,又是强类型语言。它们确定一个变量的类型是在您第一次给它赋值的时候。C 是静态类型语言,一种在编译期间就确定数据类型的语言。大多数静态类型语言是通过要求在使用任一变量之前声明其数据类型来保证这一点的。
2、对象机制不同。
Python中所有的数据,都是由对象或者对象之间的关系表示的,函数是对象,字符串是对象,每个东西都是对象的概念。每一个对象都有三种属性: 实体,类型和值。
C中没有对象这个概念,只有“数据的表示”,比如说,如果有两个int变量a和b,想比较大小,可以用a == b来判断,但是如果是两个字符串变量a和b,就不得不用strcmp来比较了,因为此时,a和b本质上是指向字符串的指针,如果直接用==比较, 那比较的实际是指针中存储的值地址。

3、变量类型不同。
python六个标准的数据类型:Number数字、String字符串、List列表、Tuple元祖、Sets集合、Dictionary字典,数字类型有四种类型:整数、布尔型、浮点数和复数。C语言也可分四类:基本类型、枚举类型、void的类型、派生类型。基本类型:整数类型、浮点类型。
4、函数库的使用方法不同。
在C语言中使用那个库函数,需要引入头文件用include引入,而在python中需要引入别的模块或者函数时需要用import引入。
两者的不同机制是C语言中include是告诉预处理器,这个include指定的文件的内容,要当作本地源文件出现过,而python中的import可以通过简单的import 导入,或者是 import numpy as np 。
5、全局变量不同。
在C语言中,声明全局变量,如果值是恒定的,那么可以直接用#define声明,如果只是声明全局,并且变量的值是可变的,那么直接类似int a 就可以了。
在python中,声明全局变量时,需要加上global,类似global a,在函数里面使用的时候需要先声明global a ,否则直接用a那么python会重新创建一个新的本地对象并将新的值赋值给他,原来的全局变量的值并不变化。
参考资料来源:百度百科-python
参考资料来源:百度百科-C语言

7. 能软机器学习的语言,比较强大一点的是C语言好,还是python好呢?

机器学习的话,感觉用python可以省去跳语言方面的坑,从而更多的精力放在机器学习算法上。当感觉用python执行算法太慢需要做优化,再去用c重写某些模块,就好了。该思想来自《机器学习实战》。

能软机器学习的语言,比较强大一点的是C语言好,还是python好呢?

8. 初学python,感受和C的不同

从开始看Python到现在也有半个多月了,前后看了Python核心编程和Dive into 
Python两本书。话说半个月看两本,是个人都知道有多囫囵吞枣,这也是因为我暂时没有需求拿这个做大型开发,主要是平时的小程序test用一用。所以
 
我的策略是,整体浏览,用到时候现查。话说这核心编程第一版太古老了,老在讲2.2之前的东西,我看的翻译电子版,翻译得也不好,很晦涩。看完这个后还有
 点云里雾里,看网上人家说DIP好,啄木鸟还有免费电子文档,就找来看这个。怎么说呢,讲的比核心编程好,但不适合第一次看的初学者。我之所以觉得讲得
 好,是因为看核心编程,有些概念还有些模糊,看了这本书就明白不少了。要是初学者上来就看这本,保证不好理解。

下面就是在学习的过程中,在翻阅资料的过程中,总结的一些C和python比较明显的不同之处,有大方向的,也有细节的。肯定没有总结完,比如动态
 
函数,lambda这些,我都懒得往上写了。实际上,作为两种完全不同的语言,下面这些差异只是冰山一角而已。权当抛砖引玉吧,至少应该对和我有相同研究
 
兴趣,正在考虑是否学习另一门语言的朋友有点帮助。此文也算是DIP的学习笔记吧。顺带说一句,要是有朋友了解,可以帮忙推荐一下实战性强的Python
教材,语言这东西,不多练手,光比划,是不可能学好的。

学习目的

我的以后的研究方向是嵌入式,显然,C语言是我的主要语言。我不是一个语言爱好者,我以前觉得,对于做研究而不是应用的人来说,了解多门语言,不如
 
精通一门语言。之所以去看python,主要还是因为python更有利于快速开发一些程序,也是因为现在认识到,研究和应用是不能分离的。个人以为,要
 想在计算机工程的竞争中立足,必须懂C语言。因为真正要做高性能编程, 
不可能将机器的体系架构抛到脑后让Python虚拟机(或Java虚拟机等)帮你搞定所有底层。越来越多的CPU 
core,越来越恐怖的内存性能瓶颈,对于上层开发人员来说,无所谓,但是对高性能程序开发人员来说,这些是无法透明的。很多应用,还是自己掌控比较有 
效。这些场合中,汇编和C还是不可替代的。但是,光知道C是不够的,掌握一门面向对象语言,相对更高层的语言,不仅对以后的个人发展有利,也会对自己的技
 术认识产生帮助。

如果要问对我来说谁更重要,我觉得还是C更重要。C的学习曲线更陡,貌似简单,实际上到处都是陷阱,看上去比较简单低效的程序,也不是学1,2个月
 
就能搞定的。谈到优化的深层次和难度嘛,需要的功底是按年算的。但是一旦你C语言的基础打好了,对计算机的理解,对其他语言的理解都是大有裨益的。比如,
 
如果你有C基础,可以说,学过1天python,就能写的出来一些不短的程序。后面的优化也不是什么大不了的算法,都是非常基本的语句换来换去。当然这里
 不是说 Python不好,实际上,上层应用,Python比C方便的不是一个层次。

很多人觉得,既然懂C了,那么进一步掌握C++应该是水到渠成,但C++不是C的超集,而我又不喜欢C++的繁琐和巨大,所以才决定看一看Python。我很喜欢Python的优雅与快捷。

语言类型

和C不一样,Python是一种动态类型语言,又是强类型语言。这个分类怎么理解呢?大概是可以按照下列说明来分类的:

静态类型语言

一种在编译期间就确定数据类型的语言。大多数静态类型语言是通过要求在使用任一变量之前声明其数据类型来保证这一点的。Java和 C 是静态类型语言。

动态类型语言

一种在运行期间才去确定数据类型的语言,与静态类型相反。Python 是动态类型的,因为它们确定一个变量的类型是在您第一次给它赋值的时候。

强类型语言

一种总是强制类型定义的语言。Java 和 Python 是强制类型定义的。您有一个整数,如果不明确地进行转换 ,不能将把它当成一个字符串。

弱类型语言

一种类型可以被忽略的语言,与强类型相反。VBScript 是弱类型的。在 VBScript 中,您可以将字符串 ‘12′ 和整数 3 进行连接得到字符串’123′,然后可以把它看成整数 123 ,所有这些都不需要任何的显示转换。

对象机制

具体怎么来理解这个“动态确定变量类型”,就要从Python的Object对象机制说起了。Objects(以下称对象)是Python对于数据
 
的抽象,Python中所有的数据,都是由对象或者对象之间的关系表示的,函数是对象,字符串是对象,每个东西都是对象的概念。每一个对象都有三种属性:
 
实体,类型和值。理解实体是理解对象中很重要的一步,实体一旦被创建,那么就一直不会改变,也不会被显式摧毁,同时通常意义来讲,决定对象所支持的操作方
 
式的类型(type,包括number,string,tuple及其他)也不会改变,改变的只可能是它的值。如果要找一个具体点的说明,实体就相当于对
 
象在内存中的地址,是本质存在。而类型和值都只是实体的外在呈现。然后Python提供一些接口让使用者和对象交互,比如id()函数用来获得对象实体的
 整形表示(实际在这里就是地址),type()函数获取其类型。

这个object机制,就是c所不具备的,主要体现在下面几点:

1 刚才说了,c是一个静态类型语言,我们可以定义int a, char 
b等等,但必须是在源代码里面事先规定。比如我们可以在Python里面任意一处直接规定a = 
“lk”,这样,a的类型就是string,这是在其赋值的时候才决定的,我们无须在代码中明确写出。而在C里面,我们必须显式规定char *a = 
“lk”,也就是人工事先规定好a的类型

2 由于在C中,没有对象这个概念,只有“数据的表示”,比如说,如果有两个int变量a和b,我们想比较大小,可以用a == 
b来判断,但是如果是两个字符串变量a和b,我们就不得不用strcmp来比较了,因为此时,a和b本质上是指向字符串的指针,如果直接还是用==比较,
 那比较的实际是指针中存储的值——地址。

在Java中呢,我们通过使用 str1 == str2 可以确定两个字符串变量是否指向同一块物理内存位置,这叫做“对象同一性”。在 Java 中要比较两个字符串值,你要使用 str1.equals(str2)。

然后在Python中,和前两者都不一样,由于对象的引入,我们可以用“is”这个运算符来比较两个对象的实体,和具体对象的type就没有关系 
了,比如你的对象是tuple也好,string也好,甚至class也好,都可以用”is”来比较,本质上就是“对象同一性”的比较,和Java中 
的==类似,和 C中的pointer比较类似。Python中也有==比较,这个就是值比较了。

3 
由于对象机制的引入,让Python的使用非常灵活,比如我们可以用自省方法来查看内存中以对象形式存在的其它模块和函数,获取它们的信息,并对它们进行
 操作。用这种方法,你可以定义没有名称的函数,不按函数声明的参数顺序调用函数,甚至引用事先并不知道名称的函数。 这些操作在C中都是不可想象的。

4 还有一个很有意思的细节,就是类型对对象行为的影响是各方面的,比如说,a = 1; b = 
1这个语句中,在Python里面引发的,可能是a,b同时指向一个值为1的对象,也可能是分别指向两个值为1的对象。而例如这个语句,c = []; d
 = [],那么c和d是肯定指向不同的,新创建的空list的。没完,如果是”c = d = 
[]“这个语句呢?此时,c和d又指向了相同的list对象了。这些区别,都是在c中没有的。

最后,我们来说说为什么python慢。主要原因就是function call 
overhead比较大。因为所有东西现在都是对象了,contruct 和destroy 花费也大。连1 + 1 都是 function 
call,像’12′+’45′ 这样的要 create a third string object, then calls the string
 obj’s __add。可想而知,速度如何能快起来?

列表和数组

分析Python中的list和C中的数组总是很有趣的。相信可能一些朋友和一样,初学列表的时候,都是把它当作是数组来学的。最初对于list和数组区别的定性,主要是集中在两点。首先,list可以包含很多不同的数据类型,比如

["this", 1, "is", "an", "array"]

这个List,如果放在C中,其实是一个字符串数组,相当于二维的了。

其次呢,list有很多方法,其本身就是一个对象,这个和C的单纯数组是不同的。对于List的操作很多样,因为有方法也有重载的运算符。也带来一些问题,比如下面这个例子:

加入我们要产生一个多维列表,用下面这个语句

A = [[None] * 2] * 3

结果,A的值会是

[[None, None], [None, None], [None, None]]

初一看没问题,典型的二维数组形式的列表。好,现在我们想修改第一个None的值,用语句

A[0][0] = 5

现在我们再来看看A的值:

[[5, None], [5, None], [5, None]]

发现问题没有?这是因为用 * 来复制时,只是创建了对这个对象的引用,而不是真正的创建了它。 *3 创建了一个包含三个引用的列表,这三个引用都指向同一个长度为2的列表。其中一个行的改变会显示在所有行中,这当然不是你想要的。解决方法当然有,我们这样来创建

A = [None]*3
for i in range(3):
A[i] = [None] * 2

这样创建了一个包含三个不同的长度为2的列表。

所以,还是一直强调的,越复杂的东西,越灵活,也越容易出错。

代码优化

C是一个很简单的语言,当我们考虑优化的时候,通常想得也很简单,比如系统级调用越少越好(缓冲区机制),消除循环的低效率和不必要的系统引用,等
 等,其实主要都是基于系统和硬件细节考虑的。而Python就完全不一样了,当然上面说的这些优化形式,对于Python仍然是实用的,但由于 
Python的语法形式千差万别,库和模块多种多样,所以对于语言本身而言,就有很多值得注意的优化要点,举几个例子吧。

比如我们有一个list L1,想要构建一个新的list L2,L2包括L1的头4个元素。按照最直接的想法,代码应该是

L2 = []
for i in range[3]:
L2.append(L1[i])

而更加优化和优美的版本是

L2 = L1[:3]

再比如,如果s1..s7是大字符串(10K+),那么join([s1,s2,s3,s4,s5,s6,s7])就会比 
s1+s2+s3+s4+s5+s6+s7快得多,因为后者会计算很多次子表达式,而join()则在一次过程中完成所有的复制。还有,对于字符串操作,
 对字符串对象使用replace()方法。仅当在没有固定字符串模式时才使用正则表达式。

所以说,以优化为评判标准,如果说C是短小精悍,Python就是博大精深。

include和import

在C语言中的include非常简单,因为形式单一,意义明确,当你需要用到外部函数等资源时,就用include。而Python中有一个相似的
 机制,就是import。乍一看,这两个家伙挺像的,不都是我们要用外部资源(最常见的就是函数或者模块(Python))时就用这个来指明么?其实不
 
然,两者的处理机制本质区别在于,C中的include是用于告诉预处理器,这个include指定的文件的内容,你都给我当作在本地源文件中出现过。而
 
import呢,不是简单的将后面的内容*直接*插入到本地里面去,这玩意更加灵活。事实上,几乎所有类似的机制,Python都比C灵活。这里不是说C
 不好,C很简练,我其实更喜欢C。

简单说说这个灵活性。import在python中有三种形式,import X, from X import *( or a,b,c……),
 X = __import__(’x')。最常用的是第二种,因为比较方便,不像第一种那样老是用X.module来调用模块。from X 
import *只是import那些public的module(一般都是不以__命名的模块),也可以指定a,b,c来import。

什么时候用哪一种形式呢?应该说,在大多数的模块文档里,都会明确告诉你应该用哪种形式。如果需要用到很多对象,那么from X import 
*可能更合适一些,但是,就目前来看,大多数第三方Python库都不推荐使用from modulename import * 
这种格式。这样做会使引入者的namespace混乱。很多人甚至对于那些专门设计用于这种模式的模块(包括Tkinter, 
threading和matplot)都不采用这种方式。而如果你仅仅需要某个对象类a,那么用from X import a比用import 
X.a更好,因为以后你调用a的函数直接用a.function()既可以了,不用加X。

如果你连自己希望import的模块都不知道怎么办?请注意,此时Python的优势就体现出来了,我们可以用 
__import__(module)来调用module,其中这个module是字符串,这样,可以在运行时再决定,你到底要调用什么module。举
 个例子:

def classFromModule (module, Name):
mod = __import__ (module)
return getattr (mod, Name)

这里,定义了一个函数classFromModule,你可以在代码的任何时候调用它,

o = classFromModule (ModuleOfTheClass, NameOfTheAttribute)()

只需要传入字符串形式的你希望import的模块ModuleOfTheClass和其中属性的名字NameOfTheAttribute(当然可以是数据也可以是方法),就能调用了,这个名字字符串不用事先指定,而是根据当时运行的情况来判断。

顺带说一句,Python中import的顺序也有默认规定,这个和C中的include有点类似,因为我们一般都是先include系统文件,再
 include自己的头文件(而且还有和“”的区别)。Python中呢,一般应该按照以下顺序import模块:

1. 标准库模块 — 如 sys, os, getopt 等

2. 第三方模块

3. 本地实现的模块。

全局变量

这里谈全局变量呢,倒不是说Python和c的全局变量概念不同,他们的概念是相同的。只是在使用机制上,是有一些差异的。举个例子:

– module.py –
globalvar = 1

def func():
print globalvar
# This makes someglobal readonly,
# any attempt to write to someglobal
# would create a new local variable.

def func2():
global globalvar
globalvar = 2
# this allows you to manipulate the global
# variable

在 func这个函数中,globalvar是只读的。如果你使用了globalvar = 
xxx这种赋值语句,Python会重新创造一个新的本地对象并将新值赋给它,原来的对象值不变。而在func2函数中,由于我们事先申明了 
globalvar是global的,那么此时的更改就直接在全局变量上生效。